ACCUEIL

Consignes aux
auteurs et coordonnateurs
Nos règles d'éthique
Auteurs : soumettez
votre article en ligne

APPEL À
CONTRIBUTION

Le comité de rédaction du JESA lance un appel à proposition de numéros spéciaux.

En savoir plus >>
Autres revues >>

Journal Européen des Systèmes Automatisés

1269-6935
Revues des Systèmes
 

 ARTICLE VOL 41/3-4 - 2007  - pp.365-412  - doi:10.3166/jesa.41.365-412
TITLE
A survey of controllability and stabilization results for partial differential equations

RÉSUMÉ
Cet article passe en revue diverses questions liées au contrôle des équations aux déri-vées partielles (EDP). La question principale sur laquelle se focalise le papier est celle de la contrôlabilité exacte, qui correspond au fait que la solution d’une EDP peut être amenée à un état donné au bout d’un temps donné au moyen d’un contrôle agissant sur une sous-région du domaine ou de la frontière. On montre qu’une telle propriété est équivalente à une propriété d’observabilité pour le système adjoint. L’étude de la contrôlabilité exacte est détaillée sur plusieurs exemples, incluant l’équation des ondes, l’équation de la chaleur, et l’équation des plaques en une dimension d’espace. La contrôlabilité de l’équation de Korteweg-de Vries est également détaillée afin de fournir certaines idées mises en jeu dans le contrôle d’une EDP non linéaire. La dernière section du papier est dévolue à la question de la stabilisation et à ses liens avec les propriétés de contrôlabilité.

ABSTRACT
This paper surveys several issues related to the control of partial differential equa-tions (PDE). The main focus is on the exact controllability property, which corresponds to the question of whether the solution of a PDE can be driven to a given state at a given final time by means of a control acting on a subregion of the domain or of the boundary. It is demonstrated that such a property is equivalent to an observability property for the adjoint system. The study of the exact controllability is detailed on several examples, including the wave equation, the heat equation, and the plate equation in dimension one. The controllability of the Korteweg-de Vries equation is also detailed in order to give an insight of the ideas involved in the control of a nonlinear PDE. The last part of the paper is devoted to the stabilization issue and to its connections with the controllability properties.

AUTEUR(S)
Lionel ROSIER

MOTS-CLÉS
contrôlabilité exacte, contrôlabilité à zéro, tests fréquentiels, stabilisation exponentielle,

KEYWORDS
exact controllability, null controllability, frequency domain test, exponential stabilizability,

LANGUE DE L'ARTICLE
Anglais

 PRIX
• Abonné (hors accès direct) : 7.5 €
• Non abonné : 15.0 €
|
|
--> Tous les articles sont dans un format PDF protégé par tatouage 
   
ACCÉDER A L'ARTICLE COMPLET  (314 Ko)



Mot de passe oublié ?

ABONNEZ-VOUS !

CONTACTS
Comité de
rédaction
Conditions
générales de vente

 English version >> 
Lavoisier